1,790 research outputs found

    The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase eta

    Get PDF
    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol eta activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only aminimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.ope

    Posttranslational Regulation of Human DNA Polymerase ι.

    Get PDF
    Human DNA polymerases (pols) η and ι are Y- family DNA polymerase paralogs that facilitate translesion synthesis (TLS) past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines, may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the PCNA-interacting region, the Rev1-interacting region, as well as its Ubiquitin Binding Motifs, UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA damaging agents such as UV- light (generating UV-photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand crosslinks), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via K11- and K48- linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle, as no polyubiquitination was observed after treatment with rotenone, or antimycin A, which inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase, KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at K11- and K48- rather than oxidative damage per se

    129-derived Strains of Mice Are Deficient in DNA Polymerase ι and Have Normal Immunoglobulin Hypermutation

    Get PDF
    Recent studies suggest that DNA polymerase η (polη) and DNA polymerase ι (polι) are involved in somatic hypermutation of immunoglobulin variable genes. To test the role of polι in generating mutations in an animal model, we first characterized the biochemical properties of murine polι. Like its human counterpart, murine polι is extremely error-prone when catalyzing synthesis on a variety of DNA templates in vitro. Interestingly, when filling in a 1 base-pair gap, DNA synthesis and subsequent strand displacement was greatest in the presence of both pols ι and η. Genomic sequence analysis of Poli led to the serendipitous discovery that 129-derived strains of mice have a nonsense codon mutation in exon 2 that abrogates production of polι. Analysis of hypermutation in variable genes from 129/SvJ (Poli−/−) and C57BL/6J (Poli+/+) mice revealed that the overall frequency and spectrum of mutation were normal in polι-deficient mice. Thus, either polι does not participate in hypermutation, or its role is nonessential and can be readily assumed by another low-fidelity polymerase

    Eukaryotic Y-family polymerases bypass a 3-methyl-2′-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo

    Get PDF
    N3-methyl-adenine (3MeA) is the major cytotoxic lesion formed in DNA by SN2 methylating agents. The lesion presumably blocks progression of cellular replicases because the N3-methyl group hinders interactions between the polymerase and the minor groove of DNA. However, this hypothesis has yet to be rigorously proven, as 3MeA is intrinsically unstable and is converted to an abasic site, which itself is a blocking lesion. To circumvent these problems, we have chemically synthesized a 3-deaza analog of 3MeA (3dMeA) as a stable phosphoramidite and have incorporated the analog into synthetic oligonucleotides that have been used in vitro as templates for DNA replication. As expected, the 3dMeA lesion blocked both human DNA polymerases α and δ. In contrast, human polymerases η, ι and κ, as well as Saccharomyces cerevisiae polη were able to bypass the lesion, albeit with varying efficiencies and accuracy. To confirm the physiological relevance of our findings, we show that in S. cerevisiae lacking Mag1-dependent 3MeA repair, polη (Rad30) contributes to the survival of cells exposed to methyl methanesulfonate (MMS) and in the absence of Mag1, Rad30 and Rev3, human polymerases η, ι and κ are capable of restoring MMS-resistance to the normally MMS-sensitive strain

    Targeted copy number variant identification across the neurodegenerative disease spectrum

    Get PDF
    Background: Although genetic factors are known to contribute to neurodegenerative disease susceptibility, there remains a large amount of heritability unaccounted for across the diagnoses. Copy number variants (CNVs) contribute to these phenotypes, but their presence and influence on disease state remains relatively understudied. Methods: Here, we applied a depth of coverage approach to detect CNVs in 80 genes previously associated with neurodegenerative disease within participants of the Ontario Neurodegenerative Disease Research Initiative (n = 519). Results: In total, we identified and validated four CNVs in the cohort, including: (1) a heterozygous deletion of exon 5 in OPTN in an Alzheimer\u27s disease participant; (2) a duplication of exons 1–5 in PARK7 in an amyotrophic lateral sclerosis participant; (3) a duplication of \u3e3 Mb, which encompassed ABCC6, in a cerebrovascular disease (CVD) participant; and (4) a duplication of exons 7–11 in SAMHD1 in a mild cognitive impairment participant. We also identified 43 additional CNVs that may be candidates for future replication studies. Conclusion: The identification of the CNVs suggests a portion of the apparent missing heritability of the phenotypes may be due to these structural variants, and their assessment is imperative for a thorough understanding of the genetic spectrum of neurodegeneration

    The Future of Agent-Based Modeling

    Get PDF
    In this paper, I elaborate on the role of agent-based (AB) modeling for macroeconomic research. My main tenet is that the full potential of the AB approach has not been realized yet. This potential lies in the modular nature of the models, which is bought by abandoning the straitjacket of rational expectations and embracing an evolutionary perspective. I envisage the foundation of a Modular Macroeconomic Science, where new models with heterogeneous interacting agents, endowed with partial information and limited computational ability, can be created by recombining and extending existing models in a unified computational framework

    Association of Factor V Leiden with Subsequent Atherothrombotic Events:A GENIUS-CHD Study of Individual Participant Data

    Get PDF
    BACKGROUND: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD. METHODS: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality. RESULTS: The studies included 69 681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61 147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; I2=28%; P-heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity. CONCLUSIONS: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment
    corecore